Algal Bloom Prediction with Particle Swarm Optimization Algorithm
نویسنده
چکیده
Precise prediction of algal booms is beneficial to fisheries and environmental management since it enables the fish farmers to gain more ample time to take appropriate precautionary measures. Since a variety of existing water quality models involve exogenous input and different assumptions, artificial neural networks have the potential to be a cost-effective solution. However, in order to accomplish this goal successfully, usual problems and drawbacks in the training with gradient algorithms, i.e., slow convergence and easy entrapment in a local minimum, should be overcome first. This paper presents the application of a particle swarm optimization model for training perceptrons to forecast real-time algal bloom dynamics in Tolo Harbour of Hong Kong, with different lead times on the basis of several input hydrodynamic and/or water quality variables. It is shown that, when compared with the benchmark backward propagation algorithm, its results can be attained both more accurately and speedily.
منابع مشابه
Prediction of Stock Price using Particle Swarm Optimization Algorithm and Box-Jenkins Time Series
The purpose of this research is predicting the stock prices using the Particle Swarm Optimization Algorithm and Box-Jenkins method. In this way, the information of 165 corporations is collected from 2001 to 2016. Then, this research considers price to earnings per share and earnings per share as main variables. The relevant regression equation was created using two variables of earnings per sha...
متن کاملStock price prediction using the Chaid rule-based algorithm and particle swarm optimization (pso)
Stock prices in each industry are one of the major issues in the stock market. Given the increasing number of shareholders in the stock market and their attention to the price of different stocks in transactions, the prediction of the stock price trend has become significant. Many people use the share price movement process when com-paring different stocks while investing, and also want to pred...
متن کاملA Split-Step PSO Algorithm in Prediction of Water Quality Pollution
In order to allow the key stakeholders to have more float time to take appropriate precautionary and preventive measures, an accurate prediction of water quality pollution is very significant. Since a variety of existing water quality models involve exogenous input and different assumptions, artificial neural networks have the potential to be a cost-effective solution. This paper presents the a...
متن کاملProduction Planning Optimization Using Genetic Algorithm and Particle Swarm Optimization (Case Study: Soofi Tea Factory)
Production planning includes complex topics of production and operation management that according to expansion of decision-making methods, have been considerably developed. Nowadays, Managers use innovative approaches to solving problems of production planning. Given that the production plan is a type of prediction, models should be such that the slightest deviation from their reality. In this ...
متن کاملTraffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization
Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005